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Abstract 
This paper presents an extended Kalman filter for pose estimation using noise covariance matrices based on 

sensor output. We designed three algorithms to accurately estimate the knee joint angle during walking. We 

verified the effectiveness of the algorithm by comparing them. 

 

A Kalman filter has been mainly used in sensor 

fusion techniques for pose estimation. The Kalman 

filter is a sequential estimation and has the advantage 

that the calculation load is small. However, the 

estimation accuracy of pose estimation using the 

Kalman filter is greatly affected by the design of 

process and observation noise covariance. Therefore, 

in this study, we verified the accuracy of knee joint 

angle estimation during walking by using the process 

and observation noise covariance matrices of the 

extended Kalman filter based on the sensor output 

proposed in the previous study. The three types of 

algorism were designed in this study. The first 

algorism was designed which in only a process noise 

covariance matrix was based on the sensor output. The 

second algorism was designed in which only an 

observation noise covariance matrix was based on the 

sensor output. The third algorism was designed in 

which two noise covariance matrices were based on 

the sensor output. The effect of noise covariance 

matrices on estimation accuracy was considered by 

comparing the estimation results obtained from those 

algorisms. 

The posture of the nine-axis motion sensor is 

represented by the roll angle (φ) around the X-axis, the 

pitch angle (θ) around the Y-axis, the yaw angle (ψ) 

around the Z-axis. The reference coordinate system is 

a right-handed system with a vertical Z-axis. The 

counterclockwise was rotation defined as positive. 

Euler definition and the reference coordinate system 

are represented in Fig.1. The nine-axis motion sensor 

is attached to the subject thing and lower leg. The local 

coordinate system of the sensor is converted system 

for the left knee angle estimation. [1] 

The initial angles of roll and pitch can’t be obtained 

from the output of the gyro sensor. The initial roll and 

pitch are expressed by equations (1) and (2) using the 

gravitational acceleration obtained from the 

acceleration sensor at rest. 
 

𝛷𝐴 = 𝑡𝑎𝑛−1 𝐴𝑦

𝐴𝑧
  (−𝜋 <  𝜑𝐴  <  𝜋)              (1) 

 

𝜃𝐴 = 𝑡𝑎𝑛−1 −𝐴𝑥

√𝐴𝑦
2+𝐴𝑧

2
                                 (2) 

 

where 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 are the accelerometer outputs. 

 

 
Fig.1. Reference coordinate system and the 

definition of knee joint angle 

  

The initial Yaw is expressed by equation (3) after 

correcting the magnetic field disturbance and tilt error. 
 

𝛹𝑚 = 𝑡𝑎𝑛−1 − 𝑚𝑐
𝑦

𝑚𝑥
𝑐                                               (3) 

 

The differential Euler angles are calculated by 

applying the gyro sensor output in equation (4). 
 

[

𝛹𝑡
̇

𝜃𝑡̇

𝜑𝑡̇

] =  [

0 𝑠𝑖𝑛𝜑𝑡𝑠𝑒𝑐𝜃𝑡 𝑐𝑜𝑠𝜑𝑡𝑠𝑒𝑐𝜃𝑡

0 𝑐𝑜𝑠𝜑𝑡 −𝑠𝑖𝑛𝜑𝑡

1 𝑠𝑖𝑛𝜑𝑡𝑡𝑎𝑛𝜃𝑡 𝑐𝑜𝑠𝜑𝑡𝑡𝑎𝑛𝜃𝑡

] [

𝜔𝑡

𝜔𝑡

𝜔𝑡

] (4) 

 

where 𝜑𝑡̇ , 𝜃̇𝑡 , 𝜓𝑡
̇  are the differential Euler angles. 𝛷𝑡 

and 𝜃𝑡 are the roll and pitch angle at time t. 𝜔𝑥, 𝜔𝑦 and 

𝜔𝑧  the outputs the gyro sensor. Euler angles are 

obtained by applying equation (4) to equation (5). 
 

[

𝛹𝑡+1

𝜃𝑡+1

𝜑𝑡+1

] =  ∫ [

𝜓𝑡
̇

𝜃𝑡̇

𝜑𝑡̇

] 𝑑𝑡 + [
𝜓𝑡

𝜃𝑡

𝜑𝑡

]              (5) 

 

where 𝜑𝑡+1, 𝜃𝑡+1, and 𝜓𝑡+1 are the Euler angle. 

 

The roll, pitch, and yaw angles of each sensor 

placed on the lower limb are estimated by the sensor 

fusion using the extended Kalman filter. The nonlinear 

state equation and nonlinear observation equation are 

shown in equations (6) and (7), respectively.  



 

  
In those equations, 𝜙𝑖,𝑡 , 𝜃𝑖,𝑡 , and 𝜓𝑖,𝑡  respectively 

denote Euler angles of the sensor placed on each lower 

limb segment, as estimated using the extended Kalman 

filter. 𝑇𝑠 is sampling time. In addition, 𝜔𝑥,𝑡  , 𝜔𝑦,𝑡   , and  

𝜔𝑧,𝑡   respectively denote the gyroscope outputs for the 

X, Y, and Z axes. Also, 𝐴𝑆𝑥
, 𝐴𝑆𝑦

, and  𝐴𝑆𝑧
 respectively 

express the accelerometer output for the X, Y, and Z 

axes. 𝑅𝑖
0  is the rotation matrix from the reference 

coordinate system to the sensor i coordinate system, g 

is the gravitational acceleration, and 𝑤𝑡  and 𝜈𝑡 are the 

white noise. [2] 

The partial derivatives of 𝐹(𝑥𝑡)  and 𝐻(𝑥𝑡)  are 

shown below: 
 

𝑓(𝑥𝑡) =  
𝜕𝐹(𝑥𝑡)

𝜕(𝑥𝑡)
           (8) 

 

ℎ(𝑥𝑡) =  
𝜕𝐻(𝑥𝑡)

𝜕(𝑥𝑡)
          (9) 

 

Then, the prediction step [Eqs. (10) and (11)] and 

the filtering step [Eqs. (12)-(14)] are calculated using 

the nonlinear discrete-time system represented by Eqs. 

(8) and (9): 
 

𝑥𝑡̅+1 = 𝐹(𝑥𝑡)     (10) 
 

𝑃𝑡̅+1 = 𝑓𝑡𝑃𝑡𝑓𝑡
𝑇 + 𝑄     (11) 

 

𝐾𝑡+1 = 𝑃𝑡̅+1ℎ𝑡+1
𝑇 (ℎ𝑡+1𝑃𝑡̅+1ℎ𝑡+1

𝑇 + 𝑅)−1     (12) 
 

𝑥𝑡+1 = 𝑥𝑡̅+1 + 𝐾𝑡+1(𝑦𝑡+1 − 𝐻(𝑥𝑡̅+1))       (13) 
 

𝑃𝑡+1 = (𝐼 − 𝐾𝑡+1ℎ𝑡+1)𝑃𝑡̅+1         (14) 
 

Where P is the error covariance matrix, K is the 

Kalman gain, Q is the covariance matrix of the process 

noise 𝑤𝑡  in the nonlinear state equation, and R is the 

covariance matrix of the observation noise 𝜈𝑡  in the 

nonlinear observation equations. 𝑥𝑡̅+1 , 𝑃𝑡̅+1  are the 

state variables and error covariance matrix at time t+1 

estimated using the information up time to t. 𝑥𝑡+1 , 
𝑃𝑡+1are the state variables and error covariance matrix 

at time t+1 estimated using the information up to time 

t+1. [3] 

 The process and observation noise covariance 

matrices in the extended Kalman filter were 

determined based on the state-space model dynamics 

and the sensor noise. The postural change appears in 

the gyroscope output because the rotational motion of 

the joints produces human movement. Consequently, 

the process noise covariance matrix was determined 

based on the gyroscope output as presented below: 
 

𝑄𝑡 = [

𝛺𝜔,𝑡 0 0

0 𝛺𝜔,𝑡 0

0 0 𝛺𝜔,𝑡

]      (15) 

 

𝛺𝜔,𝑡 = 𝑎√𝜔2
𝑥,𝑡 + 𝜔2

𝑦,𝑡 + 𝜔2
𝑧,𝑡       

 

𝜔𝑥,𝑡 , 𝜔𝑦,𝑡  and 𝜔𝑧,𝑡  are gyro-sensor outputs for each 

axis, and a, b are the adjustment parameters. In this 

study, we set a = 1 and b = 0.  

 In the observation equations, the yaw angle 

calculated using the geomagnetic sensor output and 

the acceleration sensor output are used as observation 

values, so the covariance matrix of the process noise is 

adjusted based on the time series data of the 

geomagnetic sensor output and the acceleration sensor 

output. The constructed covariance matrix of the 

observation noise is shown in equation (16). 
 

𝑅𝑡 = 

[
 
 
 
𝛺𝑚,𝑡 0 0 0

0 𝛺𝑎,𝑡 0 0

0 0 𝛺𝑎,𝑡 0

0 0 0 𝛺𝑎,𝑡 ]
 
 
 

         (16) 

 

𝛺𝑚,𝑡 = 𝑐 (√𝑚𝑥,𝑡
2 + 𝑚𝑦,𝑡

2 + 𝑚𝑧,𝑡
2 − 𝑚̅) + 𝑑 

 

𝛺𝑎,𝑡 = 𝑒 (√𝑎𝑥,𝑡
2 + 𝑎𝑦,𝑡

2 + (𝑎𝑧,𝑡 − 𝑔)2) + 𝑓 

 

where 𝑚𝑥,𝑡 , 𝑚𝑦,𝑡  and 𝑚𝑧,𝑡  are the magnetometer 

outputs in each axis after tilt correction, 𝑚̅  is the 

average of the sum of the magnetometer outputs over 

the entire measurement time, 𝑎𝑥,𝑡, 𝑎𝑦,𝑡 and 𝑎𝑧,𝑡 are the 

accelerometer outputs in each axis, and c, d, e and f are 

paraments for adjustment. We set c = 0.1, d = 0, e = 

0.00001 and f = 100. 

The knee joint angle is calculated by Eq. (17) as 

shown below: 
 

     
𝑋𝑡+1 = 𝐹(𝑥𝑡) +  𝑤𝑡                      (6) 

 

𝑥𝑡 = [

𝜓𝑖,𝑡

𝜃𝑖,𝑡

𝜙𝑖,𝑡

], 𝐹(𝑥𝑡) =  [

𝜓𝑖,𝑡 + 𝑠𝑖𝑛𝜙𝑖,𝑡𝑠𝑒𝑐𝜃𝑖,𝑡𝜔𝑦𝑖,𝑡
∙ 𝑇𝑠 + 𝑐𝑜𝑠𝜙𝑖,𝑡𝑠𝑒𝑐𝜃𝑖,𝑡𝜔𝑧𝑖,𝑡

∙ 𝑇𝑠

𝜃𝑖,𝑡 + 𝑐𝑜𝑠𝜙𝑖,𝑡𝜔𝑦𝑡,𝑡 ∙ 𝑇𝑠 − 𝑠𝑖𝑛𝜙𝑖,𝑡𝜔𝑧𝑖,𝑡
∙ 𝑇𝑠

𝜙𝑖,𝑡 + 𝜔𝑥𝑖,𝑡
∙ 𝑇𝑠 + 𝑠𝑖𝑛𝜙𝑖,𝑡𝑡𝑎𝑛𝜃𝑖,𝑡𝜔𝑦𝑖,𝑡

∙ 𝑇𝑠 + 𝑐𝑜𝑠𝜙𝑖,𝑡𝑡𝑎𝑛𝜙𝑖,𝑡𝜔𝑧𝑖,𝑡
∙ 𝑇𝑠

] 

 

𝑦𝑡 = 𝐻(𝑥𝑡) + 𝜈𝑡            (7) 
 

𝑦𝑡 = 

[
 
 
 
 
𝜓𝑚𝑖,𝑡

𝐴𝑥,𝑠𝑖

𝐴𝑦,𝑠𝑖

𝐴𝑧,𝑠𝑖 ]
 
 
 
 

, 𝐻(𝑥𝑡) =  [

𝜓𝑖,𝑡

( 𝑅𝑖
0 )𝑡

𝑇 [
0
0
𝑔
]
] 

 



 

𝑅𝑖 = ( 𝑅𝑖−1
0 )𝑇 ∙ ( 𝑅0

𝑖)
𝑖−1       (17) 

 

𝑅0
𝑖

= [
𝑐𝑜𝑠 𝜓𝑖 −𝑠𝑖𝑛 𝜓𝑖 0

𝑠𝑖𝑛 𝜓𝑖 𝑐𝑜𝑠 𝜓𝑖 0

0 0 1

] [
𝑐𝑜𝑠 𝜃𝑖 0 𝑠𝑖𝑛 𝜃𝑖

0 1 0
−𝑠𝑖𝑛 𝜃𝑖 0 𝑐𝑜𝑠 𝜃𝑖

] 

 

Sensor i and sensor i-1 indicate sensor attached to 

the thigh and lower leg, respectively.  
A nine-axis motion sensor and an optical motion 

capture system were used during the experiment. A 

healthy male (height 1.76m, weight 58kg) participated 

in the experiment. The nine-axis motion sensor was 

attached to the left thigh and left lower leg. The sensor 

positions and the reference coordinate system are 

shown in Fig.2. The participant was instructed to walk 

using a natural stride in time with a metronome (70 

bpm). The sampling frequency of both the nine-axis 

motion sensor and the three-dimensional motion 

analyzer was 100Hz. 

Figure 3 shows the estimated left knee joint angles 

(flexion-extension) using the extended Kalman filter 

and the results obtained from the three-dimensional 

motion measurement analysis device. The horizontal 

axis is 100% for one gait cycle, and one gait cycle 

including one stance phase and one walking phase as 

100%. Black solid curves represent results obtained 

from the optical 3D motion analysis system. Red solid 

curves represent results obtained from the extended 

Kalman filter using the noise covariance matrices 

based on sensor output, hereinafter designated as Oo 

and Op. Green solid curves represent results obtained 

from Oo and Op, which used gyroscope output for the 

process noise covariance matrix and which used a 

constant value for the observation noise covariance 

matrix, hereinafter designated as Op. Blue solid curves 

represent results obtained from Oo and Op, which used 

the constant value for the process noise covariance 

matrix and which used accelerometer and 

magnetometer output for the observation noise 

covariance matrix, hereinafter designated as Oo. The 

constant noise covariance matrix was adjusted to 

match the results of the three-dimensional motion 

analyzer, with 𝛺𝜔  = 0.0005 for the process noise 

covariance matrix and 𝛺𝑚 = 𝛺𝑎 = 1500 for the 

observation noise covariance matrix.  
Fig. 3 shows that the proposed method Oo and Op 

is generally consistent with the result of the optical 3D 

motion analysis system. The proposed method was 

evaluated by using the root mean square error (RMSE) 

against the results of the optical 3D motion analysis 

system. The root mean square error is represented in 

Eq. (18). 
 

𝑅𝑆𝑀𝐸 =  √
1

𝑛
∑ (𝑓𝑖 − 𝑦𝑖)

𝑛
𝑘=1

2
      (18) 

 

The results of the RSME were Oo = 6.49 [degree], 

Op = 7.32[degree], and Oo and Op = 6.33[degree]. 

 
Fig.2. Sensor position and coordinate system 

 
Fig.3. Knee joint angle during walking 

 

 

As a result, we determined that Oo and Op are the 

suitable method for the pose estimation during 

walking.  

In this study, we confirmed that the knee joint angle 

during walking can be estimated more accurately by 

adjusting the two noise covariance matrices based on 

the sensor output. However, the algorithm designed 

with the process noise covariance based on the sensor 

output and the observation noise covariance as a 

constant had lower estimation accuracy. In future 

work, we will build algorithms to minimize the 

environmental impact. 
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